vsg  1.1.0
VulkanSceneGraph library
vec3.h
1 #pragma once
2 
3 /* <editor-fold desc="MIT License">
4 
5 Copyright(c) 2018 Robert Osfield
6 
7 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
8 
9 The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
10 
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
12 
13 </editor-fold> */
14 
15 // we can't implement the anonymous union/structs combination without causing warnings, so disable them for just this header
16 #if defined(__GNUC__)
17 # pragma GCC diagnostic push
18 # pragma GCC diagnostic ignored "-Wpedantic"
19 #endif
20 #if defined(__clang__)
21 # pragma clang diagnostic push
22 # pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
23 # pragma clang diagnostic ignored "-Wnested-anon-types"
24 #endif
25 
26 #include <vsg/maths/vec2.h>
27 
28 namespace vsg
29 {
30 
32  template<typename T>
33  struct t_vec3
34  {
35  using value_type = T;
36 
37  union
38  {
39  value_type value[3];
40  struct
41  {
42  value_type x, y, z;
43  };
44  struct
45  {
46  value_type r, g, b;
47  };
48  struct
49  {
50  value_type s, t, p;
51  };
52  };
53 
54  constexpr t_vec3() :
55  value{} {}
56  constexpr t_vec3(const t_vec3& v) :
57  value{v.x, v.y, v.z} {}
58  constexpr t_vec3& operator=(const t_vec3&) = default;
59  constexpr t_vec3(value_type in_x, value_type in_y, value_type in_z) :
60  value{in_x, in_y, in_z} {}
61 
62  template<typename R>
63  constexpr t_vec3(const t_vec2<R>& v, value_type in_z) :
64  value{v.x, v.y, in_z} {}
65 
66  template<typename R>
67  constexpr explicit t_vec3(const t_vec3<R>& v) :
68  value{static_cast<T>(v.x), static_cast<T>(v.y), static_cast<T>(v.z)} {}
69 
70  constexpr std::size_t size() const { return 3; }
71 
72  value_type& operator[](std::size_t i) { return value[i]; }
73  value_type operator[](std::size_t i) const { return value[i]; }
74 
75  template<typename R>
76  t_vec3& operator=(const t_vec3<R>& rhs)
77  {
78  value[0] = static_cast<value_type>(rhs[0]);
79  value[1] = static_cast<value_type>(rhs[1]);
80  value[2] = static_cast<value_type>(rhs[2]);
81  return *this;
82  }
83 
84  T* data() { return value; }
85  const T* data() const { return value; }
86 
87  void set(value_type in_x, value_type in_y, value_type in_z)
88  {
89  x = in_x;
90  y = in_y;
91  z = in_z;
92  }
93 
94  inline t_vec3& operator+=(const t_vec3& rhs)
95  {
96  value[0] += rhs.value[0];
97  value[1] += rhs.value[1];
98  value[2] += rhs.value[2];
99  return *this;
100  }
101 
102  inline t_vec3& operator-=(const t_vec3& rhs)
103  {
104  value[0] -= rhs.value[0];
105  value[1] -= rhs.value[1];
106  value[2] -= rhs.value[2];
107  return *this;
108  }
109 
110  inline t_vec3& operator*=(value_type rhs)
111  {
112  value[0] *= rhs;
113  value[1] *= rhs;
114  value[2] *= rhs;
115  return *this;
116  }
117 
118  inline t_vec3& operator*=(const t_vec3& rhs)
119  {
120  value[0] *= rhs.value[0];
121  value[1] *= rhs.value[1];
122  value[2] *= rhs.value[2];
123  return *this;
124  }
125 
126  inline t_vec3& operator/=(value_type rhs)
127  {
128  if constexpr (std::is_floating_point_v<value_type>)
129  {
130  value_type inv = static_cast<value_type>(1.0) / rhs;
131  value[0] *= inv;
132  value[1] *= inv;
133  value[2] *= inv;
134  }
135  else
136  {
137  value[0] /= rhs;
138  value[1] /= rhs;
139  value[2] /= rhs;
140  }
141  return *this;
142  }
143 
144  explicit operator bool() const noexcept { return value[0] != 0.0 || value[1] != 0.0 || value[2] != 0.0; }
145  };
146 
147  using vec3 = t_vec3<float>; // float 3D vector
148  using dvec3 = t_vec3<double>; // double 3D vector
149  using bvec3 = t_vec3<int8_t>; // signed 8 bit integer 3D vector
150  using svec3 = t_vec3<int16_t>; // signed 16 bit integer 3D vector
151  using ivec3 = t_vec3<int32_t>; // signed 32 bit integer 3D vector
152  using ubvec3 = t_vec3<uint8_t>; // unsigned 8 bit integer 3D vector
153  using usvec3 = t_vec3<uint16_t>; // unsigned 16 bit integer 3D vector
154  using uivec3 = t_vec3<uint32_t>; // unsigned 32 bit integer 3D vector
155 
156  VSG_type_name(vsg::vec3);
157  VSG_type_name(vsg::dvec3);
158  VSG_type_name(vsg::bvec3);
159  VSG_type_name(vsg::svec3);
160  VSG_type_name(vsg::ivec3);
161  VSG_type_name(vsg::ubvec3);
162  VSG_type_name(vsg::usvec3);
163  VSG_type_name(vsg::uivec3);
164 
165  template<typename T>
166  constexpr bool operator==(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
167  {
168  return lhs[0] == rhs[0] && lhs[1] == rhs[1] && lhs[2] == rhs[2];
169  }
170 
171  template<typename T>
172  constexpr bool operator!=(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
173  {
174  return lhs[0] != rhs[0] || lhs[1] != rhs[1] || lhs[2] != rhs[2];
175  }
176 
177  template<typename T>
178  constexpr bool operator<(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
179  {
180  if (lhs[0] < rhs[0]) return true;
181  if (lhs[0] > rhs[0]) return false;
182  if (lhs[1] < rhs[1]) return true;
183  if (lhs[1] > rhs[1]) return false;
184  return lhs[2] < rhs[2];
185  }
186 
187  template<typename T>
188  constexpr t_vec3<T> operator-(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
189  {
190  return t_vec3<T>(lhs[0] - rhs[0], lhs[1] - rhs[1], lhs[2] - rhs[2]);
191  }
192 
193  template<typename T>
194  constexpr t_vec3<T> operator-(const t_vec3<T>& v)
195  {
196  return t_vec3<T>(-v[0], -v[1], -v[2]);
197  }
198 
199  template<typename T>
200  constexpr t_vec3<T> operator+(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
201  {
202  return t_vec3<T>(lhs[0] + rhs[0], lhs[1] + rhs[1], lhs[2] + rhs[2]);
203  }
204 
205  template<typename T>
206  constexpr t_vec3<T> operator*(const t_vec3<T>& lhs, T rhs)
207  {
208  return t_vec3<T>(lhs[0] * rhs, lhs[1] * rhs, lhs[2] * rhs);
209  }
210 
211  template<typename T>
212  constexpr t_vec3<T> operator*(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
213  {
214  return t_vec3<T>(lhs[0] * rhs[0], lhs[1] * rhs[1], lhs[2] * rhs[2]);
215  }
216 
217  template<typename T>
218  constexpr t_vec3<T> operator/(const t_vec3<T>& lhs, T rhs)
219  {
220  if constexpr (std::is_floating_point_v<T>)
221  {
222  T inv = static_cast<T>(1.0) / rhs;
223  return t_vec3<T>(lhs[0] * inv, lhs[1] * inv, lhs[2] * inv);
224  }
225  else
226  {
227  return t_vec3<T>(lhs[0] / rhs, lhs[1] / rhs, lhs[2] / rhs);
228  }
229  }
230 
231  template<typename T>
232  constexpr T length(const t_vec3<T>& v)
233  {
234  return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
235  }
236 
237  template<typename T>
238  constexpr T length2(const t_vec3<T>& v)
239  {
240  return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
241  }
242 
243  template<typename T>
244  constexpr t_vec3<T> normalize(const t_vec3<T>& v)
245  {
246  return v / length(v);
247  }
248 
249  template<typename T>
250  constexpr T dot(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
251  {
252  return lhs[0] * rhs[0] + lhs[1] * rhs[1] + lhs[2] * rhs[2];
253  }
254 
255  template<typename T>
256  constexpr t_vec3<T> cross(const t_vec3<T>& lhs, const t_vec3<T>& rhs)
257  {
258  return t_vec3<T>(lhs[1] * rhs[2] - rhs[1] * lhs[2],
259  lhs[2] * rhs[0] - rhs[2] * lhs[0],
260  lhs[0] * rhs[1] - rhs[0] * lhs[1]);
261  }
262 
263  template<typename T>
264  constexpr t_vec3<T> mix(const t_vec3<T>& start, const t_vec3<T>& end, T r)
265  {
266  T one_minus_r = 1 - r;
267  return t_vec3<T>(start[0] * one_minus_r + end[0] * r,
268  start[1] * one_minus_r + end[1] * r,
269  start[2] * one_minus_r + end[2] * r);
270  }
271 
272  template<typename T>
273  constexpr t_vec3<T> orthogonal(const t_vec3<T>& v)
274  {
275  // use the cross product against the axis which is the most orthogonal to the input vector.
276  auto abs_x = fabs(v.x);
277  auto abs_y = fabs(v.y);
278  auto abs_z = fabs(v.z);
279  if (abs_x < abs_y)
280  {
281  if (abs_x < abs_z) return {0.0, v.z, -v.y}; // v.x shortest, use cross with x axis
282  }
283  else if (abs_y < abs_z)
284  {
285  return {-v.z, 0.0, v.x}; // v.y shortest, use cross with y axis
286  }
287  return {v.y, -v.x, 0.0}; // v.z shortest, use cross with z axis
288  }
289 
290 } // namespace vsg
291 
292 #if defined(__clang__)
293 # pragma clang diagnostic pop
294 #endif
295 #if defined(__GNUC__)
296 # pragma GCC diagnostic pop
297 #endif
t_vec2 template class that represents a 2D vector
Definition: vec2.h:38
t_vec3 template class that represents a 3D vector
Definition: vec3.h:34